Before we dig deep into the principles of Transmission Line Losses, let us first review a brief history of the power transmission line particularly with Overhead Transmission Line.

(courtesy of wikipedia)

The first transmission of electrical impulses over an extended distance was demonstrated on July 14, 1729 by the physicist Stephen Gray, in order to show that one can transfer electricity by that method. The demonstration used damp hemp cords suspended by silk threads (the low resistance of metallic conductors not being appreciated at the time).

However the first practical use of overhead lines was in the context of telegraphy. By 1837 experimental commercial telegraph systems ran as far as 13 miles (20 km). Electric power transmission was accomplished in 1882 with the first high voltage transmission between Munich and Miesbach. 1891 saw the construction of the first three-phase alternating current overhead line on the occasion of the International Electricity Exhibition in Frankfurt, between Lauffen and Frankfurt.

In 1912 the first 110 kV-overhead power line entered service followed by the first 220 kV-overhead power line in 1923. In the 1920s RWE AG built the first overhead line for this voltage and in 1926 built a Rhine crossing with the pylons of Voerde, two masts 138 meters high.

In Germany in 1957 the first 380 kV overhead power line was commissioned (between the transformer station and Rommerskirchen). In the same year the overhead line traversing of the Strait of Messina went into service in Italy, whose pylons served the Elbe crossing 1. This was used as the model for the building of the Elbe crossing 2 in the second half of the 1970s which saw the construction of the highest overhead line pylons of the world. Starting from 1967 in Russia, and also in the USA and Canada, overhead lines for voltage of 765 kV were built. In 1982 overhead power lines were built in Russia between Elektrostal and the power station at Ekibastusz, this was a three-phase alternating current line at 1150 kV (Powerline Ekibastuz-Kokshetau). In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the Kita-Iwaki Powerline. In 2003 the building of the highest overhead line commenced in China, the Yangtze River Crossing.


  1. Some of the range of over head transmission lines products includes Disc Insulators, Low Tension Pin Insulators, Pin Insulators, Vibration dampeners, Repair sleeves, Fiber spacers.

  2. Foul weather conditions can lead to corona discharges on high voltage over head transmission lines which are perceivable as an audible broadband crackling and hissing noise.

  3. over head transmission lines planning, routing, and design and material supply within a stipulated time schedule is must.